

Research and Information Service Research Paper

Paper 26/24

19 July 2024

NIAR 152-2024

Management of Algal Blooms

Olivia Davies

This research paper considers management options to prevent and control freshwater algal blooms.

This information is provided to Members of the Legislative Assembly (MLAs) in support of their duties, and is not intended to address the specific circumstances of any particular individual. It should not be relied upon as professional legal advice, or as a substitute for it.

Key Points

- Blue-green algal blooms are a global phenomenon characterised by a rapid accumulation of algae in aquatic environments.
- Algal blooms can have a variety of causes and wide-reaching harmful impacts on the environment, industry and society.
- Blue-green algae are gaining increasing attention in Northern Ireland and globally due to the increasing prevalence of algal blooms.
- Management strategies are being developed to address algal bloom prevention, including riparian buffers, removal of lake sediment, constructed wetlands, aeration, artificial mixing and removal of zebra mussels.
- There is also interest in methods to control algal blooms once they have formed. These methods are split into three categories, physical, chemical and biological control.
- Physical control methods considered include shading technology, barley straw, air flotation, clay flocculation, nanotechnologies, filtration, ultrasonication and ultraviolet.
- Chemical control methods considered include hydrogen peroxide, copper sulfate, peracetic acid and simazine.
- Biological control methods considered include algicidal bacteria, cyanophage and grazers.

Executive Summary

Algal blooms are a global phenomenon characterised by a rapid accumulation of algae in aquatic environments and have been gaining attention in Northern Ireland and around the world due to the increasing prevalence of algal blooms globally. Blue-green algae known as cyanobacteria are ancient photosynthetic organisms found in almost every habitat on Earth. Cyanobacteria are essential for the survival of life on Earth, however recently they have gained more attention for the consequences of blue-green algal blooms. These include environmental, human and animal health and industrial impacts. In the summer of 2023, and again more recently, algal blooms gained large-scale public attention due to large blooms in Lough Neagh and other lakes in Northern Ireland. Lough Neagh has received particular attention since it supplies around 40% of raw water in Northern Ireland. The increasingly poor ecological status of lakes in Northern Ireland alongside the prevalence of algal blooms has prompted calls to action from Members of the Legislative Assembly (MLAs) and the general public to the Northern Ireland (NI) Executive. This research paper considers management options to prevent and control freshwater algal blooms.

Algal bloom management options include methods to prevent the onset of algal blooms and control algal blooms once they have formed. Methods to prevent the onset of algal blooms include riparian buffers, removal of lake sediment, constructed wetlands, aeration, artificial mixing and removal of zebra mussels. These methods tend to focus on reducing the amount of nutrient pollution entering the water body (e.g. riparian buffers, removal of nutrient-rich lake sediment and constructed wetlands) or disrupting the physical conditions of the lake to make algal bloom formation unfavourable (e.g. aeration and artificial mixing).

Methods and technologies to control the proliferation of algal blooms once formed can be split into three categories (physical, chemical and biological) however, many technologies overlap. Physical control methods include shading technology, barley straw, air flotation, clay flocculation, nanotechnologies, filtration, ultrasonication and ultraviolet. Chemical control methods include hydrogen peroxide, copper sulfate, peracetic acid and simazine. The biological control methods considered in this research paper are algicidal bacteria, cyanophage and grazers.

The research paper concludes by prompting considerations based on the research paper regarding the longevity of management options, their stage in the development process and strategies for Northern Ireland lakes.

Contents

Manager	nent of Algal Blooms1
Key Poin	its2
Executive	e Summary 3
1	Introduction7
1.1	Research paper scope7
1.2	Blue-green algae 8
1.3	Causes
1.4	Impacts
1.5	Algal blooms in Northern Ireland14
2	Prevention
2.1	Riparian buffers
2.2	Removal of lake sediment
2.3	Constructed wetlands
2.4	Aeration
2.5	Artificial mixing
2.6	Removal of zebra mussels
3	Control 24
4	Physical control
4.1	Shading technology
4.2	Barley straw
4.3	Air flotation
4.4	Clay flocculation
4.5	Other nanotechnologies
4.6	Filtration
4.7	Ultrasonication
4.8	Ultraviolet (UV)

5	Chemical control	33
5.1	Hydrogen peroxide	33
5.2	Copper sulfate	34
5.3	Peracetic acid	34
5.4	Simazine	35
6	Biological control	36
6 6.1	Biological control	
•	-	36
6.1	Algicidal bacteria	36 37
6.1 6.2	Algicidal bacteria Cyanophage	36 37 38

1 Introduction

Algal blooms are a global phenomenon characterised by a rapid accumulation of algae in aquatic environments, often resulting in visible regions of algal growth on the water's surface. Algal blooms can occur in freshwater, marine and brackish environments and typically have multiple contributing factors that work together to promote algal growth. The rapid accumulation of algae during a bloom can have significant impacts on the environment, human and animal health, and industry. In Northern Ireland (NI), ongoing algal blooms in Lough Neagh, including during the summer of 2023 and a recent recurrence, have caused widespread concern and attention. This research paper considers management options to prevent and control freshwater algal blooms.

1.1 Research paper scope

Algal blooms have been researched extensively from the causes and impacts to potential prevention and control methods. This research paper considers management options to prevent and control freshwater algal blooms. This paper includes a selection of management options categorised by the primary objective of the method: prevention (section 2) or control of algal blooms (section 3).

It should be noted that this is a proactive research paper from the Research and Information Service (RaISe) at the Northern Ireland Assembly and the selection of methods discussed here is not absolute or exhaustive. The inclusion of a technology does not indicate preference over other technologies. Management options included in this research paper may not necessarily be suitable or authorised for use in Northern Ireland.

A key factor for algal bloom formation is excessive nutrients caused by runoff from agriculture, wastewater treatment and urban areas. It is acknowledged that managing nutrient flow from human activities is a long-term, effective and important consideration for the management of algal blooms in water bodies. However, this research paper considers the research surrounding other physical, chemical and biological management options which could prevent or control freshwater algal blooms.

1.2 Blue-green algae

Blue-green algae are gaining increasing attention in NI and around the world due to the increasing prevalence of algal blooms globally. Algal blooms occur when there is a rapid accumulation of algae in an aquatic environment and can form freshwater, marine and brackish water¹. It is important to note that algae refers to a wide range of microorganisms including bacteria. However, bluegreen algae specifically refers to a type of bacteria known as cyanobacteria.

Cyanobacteria are found in almost every habitat on Earth, from aquatic to terrestrial environments, as well as in extreme hydrothermal vents in the deep ocean². They are ancient photosynthetic organisms and are vital to life on Earth³. In photosynthesis, light and carbon dioxide are taken up from the environment to generate energy and release oxygen and water into the environment, this is the principal process of primary production⁴. Marine algae, including cyanobacteria, which are responsible for 50% of all primary production globally⁵. Although plants and trees are well known for performing photosynthesis, the origin of photosynthesis on Earth is widely believed to have originated from an ancestor of cyanobacteria⁶. The relationship between cyanobacteria and other life on Earth relies on balance. Due to a changing

¹ Whitton, B.A., '<u>Diversity, Ecology, and Taxonomy of the Cyanobacteria</u>' in *Photosynthetic Prokaryotes* (1992), p.1-51

² Arcadi, E. et al., '<u>Microbial communities inhabiting shallow hydrothermal vents as sentinels of acidification processes</u>' *Frontiers in Microbiology* (2023) Vol. 14

³ McFadden, G.I., '<u>Origin and Evolution of Plastids and Photosynthesis in Eukaryotes</u>' Cold Spring Harbor Perspectives in Biology (2014) Vol. 6

⁴ Sigman, D. M. & Hain, M. P. <u>The Biological Productivity of the Ocean</u> (2012), Accessed: 24 June 2024

⁵ Field, C.B. et al., '<u>Primary production of the biosphere: integrating terrestrial and oceanic components</u>' *Science* (1998) Vol.281, p.237-240

⁶ As cited in footnote 3

climate, this balance is changing, a notable example is the increasing prevalence of blue-green algal blooms worldwide⁷.

1.3 Causes

The causes of algal blooms are multifaceted with many contributing factors aligning to promote their formation. For further details, see RalSe research paper, <u>An overview of algal bloom in Lough Neagh</u>. These can include anthropogenic factors as well as climatic factors, including:

- Excessive nutrients, e.g. nitrogen and phosphorous
- Anthropogenic factors
- Increased water temperatures
- High sunlight
- Changes in rainfall patterns
- Increased thermal stratification

1.3.1 Excessive nutrients

The United States Environmental Protection Agency (US EPA) reports that excessive nutrients in the aquatic environment is a contributing factor to algal bloom formation⁸. Blue-green algae uptake many of their essential nutrients from the environment⁹. These are nutrients they cannot synthesise themselves and are critical for their growth and survival. In the natural environment, nutrients, such as nitrogen and phosphorous, are limited and algae growth is restricted. However, if there are excessive nutrients in the environment, algae growth is no longer restricted and blooms can form¹⁰. The nutrients primarily

⁷ Hou, X. et al., '<u>Global mapping reveals increase in lacustrine algal blooms over the past decade</u>' *Nature Geoscience* (2022) Vol.15, p.130-134

⁸ United States Environmental Protection Agency (US EPA), <u>Nutrient Pollution: The Problem</u>, (23 April 2024), Accessed: 24 June 2024

⁹ As cited in footnote 8

¹⁰ As cited in footnote 8

associated with algal blooms are nitrogen and phosphorous¹¹. These are associated with runoff from wastewater treatment, agriculture and industry¹².

1.3.2 Anthropogenic factors

Anthropogenic factors promoting algal growth are integrated with other causes of algal blooms, such as nutrient pollution. Anthropogenic factors are human actions that can lead to environmental change and in this case an increased likelihood of algal blooms. The College of Life Sciences at the University of New Hampshire states that these factors can include changes in land use, dam construction and deforestation¹³. Further, Teagasc¹⁴ states that changes in land management and development frequently result in a degradation in water quality which is linked to algal blooms¹⁵.

1.3.3 Increased water temperatures

The US EPA indicates that globally warmer water temperatures are a contributing factor in algal blooms becoming increasingly frequent and longer-lasting¹⁶. Warmer waters promote algal growth and extend the growing season of algae¹⁷. Increased water temperatures can also lead to increased stratification in a water body (see section 1.2.6)¹⁸.

¹¹ As cited in footnote 8

¹² National Ocean Service, <u>What is nutrient pollution?</u>, (18 January 2024), Accessed: 24 June 2024

¹³ University of New Hampshire, <u>Causes of harmful algal blooms: Understanding the factors behind</u> <u>the phenomenon</u>, (22 November 2023), Accessed: 24 June 2024

¹⁴ Teagasc is the Agriculture and Food Development Authority in the Republic of Ireland.

¹⁵ Teagasc, *Land Management*, (n.d.), Accessed: 24 June 2024

¹⁶ United States Environmental Protection Agency (US EPA), <u>Climate Change and Freshwater</u> <u>Harmful Algal Blooms</u>, (4 March 2024), Accessed: 24 June 2024

¹⁷ As cited in footnote 16

¹⁸ Wells, M.L. et al., '<u>Harmful algal blooms and climate change: Learning from the past and present to</u> <u>forecast the future</u>' *Harmful Algae* (2015) Vol. 49

1.3.4 High sunlight

Cyanobacteria are photosynthetic so sunlight is essential to generate energy for their growth and survival¹⁹. It can be viewed as fuel or food for these organisms. Therefore, if it is sunny for an extended period, the incidence of algal blooms is likely to increase²⁰. Sunlight as a contributing factor to blooms is most powerful when in combination with other factors such as warm water temperatures²¹.

1.3.5 Changes in rainfall pattern

Changes in rainfall patterns contribute to the increasing prevalence of algal blooms globally²². The US EPA indicates that where periods of heavy rainfall increase, runoff from agriculture, industry and urban areas increases²³. Furthermore, increased rainfall often results in more frequent sewage discharges into water bodies²⁴. Increased runoff due to rainfall is likely to cause an increase in nutrients entering the water body, the effects of nutrient pollution are described above.

1.3.6 Increased thermal stratification

Warmer waters promote increased thermal stratification in water bodies which can increase the incidence of algal blooms²⁵. Stratification is when separate and distinct temperature layers form in a water body²⁶. When stratification occurs,

¹⁹ Clark, R.L., et al., 'Light-Optimized Growth of Cyanobacterial Cultures: Growth Phases and Productivity of Biomass and Secreted Molecules in Light-Limited Batch Growth' Metabolic Engineering (2018) Vol.47

²⁰ As cited in footnote 13

²¹ As cited in footnote 13

²² As cited in footnote 17

²³ As cited in footnote 17

²⁴ Hughes, J. et al., 'Impacts and implications of climate change on wastewater systems: A New Zealand perspective' Climate Risk Management (2021) Vol.31

²⁵ Li, G., et al., '<u>Increasing ocean stratification over the past half-century</u>' Nature Climate Change (2020) Vol.10

²⁶ As cited in footnote 18

the mixing between water of different temperatures and depths is reduced²⁷. This reduction in mixing can lead to very warm surface waters, perfect for rapid algal growth²⁸.

1.4 Impacts

The impacts of algal blooms can be wide-reaching, affecting diverse areas of society and the environment. These include human and animal health, ecosystems and industries such as tourism and fishing.

1.4.1 Environment

The impact of algal blooms on ecosystems can be devastating²⁹. Algal blooms in the surface waters can block sunlight penetrating deep into the water, this can seriously impact plant growth beneath the surface waters resulting in death and removal of species from ecosystems³⁰. Further, an increased growth algal rate means an increased demand for resources such as oxygen in the water body³¹. This often leads to an intense reduction in oxygen in the environment. These oxygen-starved conditions are known as anoxic conditions and are frequently associated with the death of fish and other organisms reliant on oxygen from the water³².

1.4.2 Human Health

²⁷ Visser, P., et al., '<u>Artificial mixing to control cyanobacterial blooms: a review</u>' Aquatic Ecology (2015) Vol 50, p. 423-441

²⁸ As cited in footnote 18

²⁹ National Oceanic and Atmospheric Administration, <u>What is a harmful algal bloom?</u>, (26 April 2016), Accessed: 26 June 2024

³⁰ United States Environmental Protection Agency (US EPA), <u>The Effects: Dead Zones and Harmful</u> <u>Algal Blooms</u>, (3 January 2024), Accessed: 24 June 2024

³¹ As cited in footnote 30

³² Anderson, D.M., et al., 'Progress in understanding harmful algal blooms (HABs): Paradigm shifts and new technologies for research, monitoring and management' Annual Review of Marine Science (2012) Vol.4, p.143-176

Algal blooms can have harmful effects on human health frequently due to the release of cyanotoxins into the environment³³. Cyanotoxins are harmful chemicals released by cyanobacteria. These toxins can be lethal to wildlife, livestock, and pets, and can cause illness in humans³⁴. It is estimated that between 25 and 75% of cyanobacterial blooms are toxic³⁵. Symptoms of cyanotoxin exposure can include abdominal pain, headache, sore throat, vomiting, diarrhoea and even pneumonia³⁶.

1.4.3 Animal Health

It is important to note that animals, much like humans, can be adversely affected by algal blooms³⁷. Cyanotoxins can lead to a range of symptoms, including excessive drooling and foaming at the mouth, loss of appetite, stumbling, and abdominal tenderness³⁸. It is highly recommended that pet and livestock owners take necessary precautions to ensure that their animals do not come into contact with algal blooms as they are at higher risk of death from exposure³⁹. In fact, in 2021, there was a large wildlife mortality event in the USA caused by an algal bloom. This single event resulted in at least 2715 animals becoming ill with 92% of those animals dying⁴⁰.

1.4.4 Industry

Algal blooms can have a significant impact on industry particularly industries which are economically reliant on water bodies such as water providers, fishing,

³³ Otero, P. & Silva, M., '<u>Chapter 7 - The role of toxins: impact on human health and aquatic environments</u>' in *The Pharmacological Potential of Cyanobacteria* (2022), p. 183

³⁴ Environment Agency, <u>Algal blooms: advice for the public and landowners</u>, (31 January 2017), Accessed: 24 June 2024

³⁵ Chen, H. et al., 'Cyanobacterial Toxins in Fresh Waters', in *Encyclopedia of Environmental Health.* (2011)

³⁶ United States Environmental Protection Agency (US EPA), <u>What Are the Effects of HABs</u>, (14 June 2024), Accessed: 24 June 2024

³⁷ American Veterinary Medical Associations, <u>Harmful algal blooms (HABs)</u>, (n.d.), Accessed: 24 June 2024

³⁸ As cited in footnote 37

³⁹ As cited in footnote 34

⁴⁰ Center for Disease Control (CDC), <u>Summary Report – One Health Harmful Algal Bloom System</u> (<u>OHHABS</u>), <u>United States</u>, <u>2021</u>, (26 February 2024), Accessed: 24 June 2024

aquaculture and tourism⁴¹. These blooms frequently lead to a decline in water quality causing practical issues for water providers and communication challenges with the general public⁴². In extensive algal blooms, the water can become oxygen-starved causing large-scale fish death and presenting issues for fishing and aquaculture industries⁴³. Tourism and recreational activities are frequently severely impacted by algal blooms leading to a reduction in visitors which can be detrimental to local economies⁴⁴.

1.5 Algal blooms in Northern Ireland

In the summer of 2023, extensive blue-green algal blooms occurred widely across Northern Ireland with those at Lough Neagh receiving close attention⁴⁵. This led to questions over the safety of the water supply and lake and calls to action for the NI Executive to act on the increasingly poor ecological status of Lough Neagh⁴⁶. For more information about Lough Neagh algal blooms, see RaISe briefing paper, <u>an overview of algal bloom in Lough Neagh</u>, and topical digest, <u>algal blooms in Lough Neagh</u>.

2 Prevention

The prevention of algal blooms is a pressing issue globally and has received large-scale public attention in Northern Ireland⁴⁷. This section of the research paper considers methods to prevent the onset of algal blooms.

⁴¹ Weir, M.J., et al., '<u>Economic impacts of harmful algal blooms on fishery-dependent communities</u>' Harmful Algae (2022) Vol. 118

⁴² <u>As cited in footnote 30</u>

⁴³ Trainer, V.L., et al., '<u>Pelagic harmful algal blooms and climate change: Lessons from nature's</u> <u>experiments with extremes</u>' *Harmful Algae* (2020) Vol.91

⁴⁴ JBC Technical Reports for European Commission, '<u>Algal blooms and its economic impact</u>' (2016)

⁴⁵ <u>NI Water: Lough Neagh algae bloom expected to be 'more severe' this summer</u>, Irish news, 31 January 2024

⁴⁶ <u>Minister to propose Northern Ireland's first environmental improvement plan</u>, Independent, 13 February 2024, Accessed: 24 June 2024

⁴⁷ As cited in footnote 45

2.1 Riparian buffers

Agricultural runoff, particularly nitrates and phosphorous, is associated with an increased incidence of algal blooms⁴⁸. The use of riparian buffers to significantly reduce agricultural runoff entering water bodies has been successful in some regions⁴⁹.

Riparian buffers are the natural transitional zones between aquatic and terrestrial environments occupied with vegetation (figure 1)⁵⁰. These zones play roles in stabilizing banks, filtering nutrients and reducing nutrient pollution in water bodies⁵¹. Riparian buffers are vegetated regions working as filters, catching sediment runoff and pollutants⁵². Excess phosphorous binds to soil. Therefore, the buffer retains sediment and phosphorus, preventing them from entering the water body⁵³. Another way riparian buffers function is through the vegetation. As polluted water passes through the buffer, the plants and microbes absorb nutrients and other pollutants⁵⁴.

Some studies have recorded riparian buffers to remove up to 81% of nitrogen from water running through the buffer zone with wider riparian buffers removing larger amounts of nitrogen and phosphorus⁵⁵. International studies show that the type of vegetation in the riparian buffer also contributes to its efficiency⁵⁶.

⁴⁸ <u>As cited in footnote 12</u>

⁴⁹ Aguiar Jr, T.R., et al., '<u>Nutrient removal effectiveness by riparian buffer zones in rural temperate</u> <u>watersheds: The impact of no-till crops practices</u>', *Agricultural Water Management* (2015) Vol.149, p.74-80

⁵⁰ US EPA, <u>Riparian Buffer Width, Vegetative Cover, and Nitrogen Removal Effectiveness: A Review</u> of Current Science and Regulations (2005), p1

⁵¹ As cited in footnote 50

⁵² US Forest Service, *<u>Riparian Forest Buffers</u>*, (n.d), Accessed: 3 June 2024

⁵³ Lowrance, R., et al., 'Long-term sediment deposition in the riparian zone of a coastal plain watershed', Journal of Soil and Water Conservation (1986) Vol.41, p.266-271

⁵⁴ Mayer, P., et al., 'Long-term assessment of floodplain reconnection as a stream restoration approach for managing nitrogen in ground and surface waters', Urban Ecosystems (2022) Vol.25, p.879-907

⁵⁵ Philips, J., 'An evaluation of the factors determining the effectiveness of water quality buffer zones' Journal of Hydrology (1989) Vol.107, p133-145

⁵⁶ Hou, G., et al., '<u>A vegetation configuration pattern with a high-efficiency purification ability for TN,</u> <u>TP, AN, AP, and COD based on comprehensive assessment results</u>' *Scientific Reports* (2019) Vol.9

Researchers in Brazil showed that woody vegetation zones are highly efficient at removing nitrogen and phosphorous, while grasses remove approximately 50% of these nutrients⁵⁷.

Overall, research shows that riparian buffer zones are successful at filtering nutrients and reducing nutrient pollution entering the water body⁵⁸. In addition, many experiments have been performed in the natural environment⁵⁹. However, riparian buffers require land on the edge of water bodies to be cultivated with low human disturbance to thrive⁶⁰.

Figure 1. Aerial image of stream with riparian buffer zone by <u>Yulian Alexeyev</u> on <u>Unsplash</u>.

⁵⁷ As cited in footnote 49

⁵⁸ As cited in footnote 55

⁵⁹ As cited in footnote 49

⁶⁰ Hudson Valley Regional Council, <u>Protecting and managing Hudson River streams: The Importance</u> of stream buffer protection and management, (2015)

2.2 Removal of lake sediment

Excess nutrients in water bodies can lead to eutrophication, causing a rapid accumulation of algae⁶¹. Over decades of nutrient pollution, not only has the water become nutrient-rich, but the sediment is also affected⁶². Consequently, even if nutrient pollution from terrestrial environments is reduced, the nutrient-dense sediment can lead to the continuation of eutrophic conditions⁶³. Therefore, the removal of lake sediment (otherwise known as dredging) is being explored as a possible prevention method against algal blooms.

Dredging involves removing sediment containing high levels of nitrogen and phosphorous⁶⁴. This helps reduce the overall amounts of these nutrients in the water. Studies of lakes such as Lake Trummen⁶⁵, Lake Nanhu⁶⁶, and Lake Erie⁶⁷ have shown a decrease in nitrogen and phosphorous in both the water and sediment after dredging. However, the impact of dredging on phytoplankton⁶⁸ is not fully understood⁶⁹. It has been observed that after dredging, there is a reduction in the diversity of phytoplankton, including cyanobacteria, and genetic changes may also occur⁷⁰. This is believed to contribute to the overall reduction in algal blooms after dredging⁷¹.

65 As cited in footnote 62

⁶¹ <u>As cited in footnote 8</u>

⁶² Cronberg, G., '<u>Phytoplankton changes in Lake Trummen induced by restoration</u>' Folia Limnologica Scandinavica (1982) Vol.18

⁶³ As cited in footnote 62

⁶⁴ Eos, <u>Lake Erie Sediments: All Dredged Up with Nowhere to Grow</u>, (31 August 2021), Accessed: 3 June 2024

⁶⁶ Wan, W., et al., '<u>Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry</u>' *Environmental Research* (2020) Vol.188

⁶⁷ <u>As cited in footnote 64</u>

⁶⁸ Phytoplankton are photosynthetic microorganisms occupying sunlit layers of freshwater and marine water bodies. Phytoplankton includes cyanobacteria/blue-green algae.

⁶⁹ Wan, W., et al., '<u>Dredging alleviates cyanobacterial blooms by weakening diversity maintenance of</u> <u>bacterioplankton community</u>' Water Research (2021) Vol.202

⁷⁰ As cited in footnote 69

⁷¹ As cited in footnote 69

Interestingly, Lake Erie, USA, has found an innovative use for the dredged sediment⁷². The sediment contains high levels of nitrogen and phosphorous. As a trial, in Ohio, USA, dredged lake sediment is mixed into crop soils as fertiliser⁷³.

Dredging has been successful at reducing nutrient levels and algal blooms in freshwater lakes globally and has been applied to diverse sizes of lakes with similar effects. A review of lake sediment dredging concludes dredging is an expensive process and the long-term implications are still uncertain⁷⁴. However, there may be adverse effects to the ecosystem as a whole with vital aquatic plants being removed during the dredging process⁷⁵. Maintenance dredging may also be required to maintain the nutrient levels if the nutrients entering the system are not reduced⁷⁶.

2.3 Constructed wetlands

Constructed wetlands (CWs) are used to reduce nutrient pollution in water bodies in over 50 countries worldwide⁷⁷. Constructed wetlands utilise the natural biogeochemical and physical processes found in natural wetlands to remove nutrients from runoff and offer benefits to local ecosystems⁷⁸. Historically, wetlands have been trialled to treat wastewater by removing polluting chemicals, such as phosphorous, nitrates and ammonia⁷⁹.

⁷² As cited in footnote 64

⁷³ As cited in footnote 64

⁷⁴ Riza, M., et al., '<u>Control of eutrophication in aquatic ecosystems by sustainable dredging:</u> <u>Effectiveness, environmental impacts, and implications</u>' Case Studies in Chemical and Environmental Engineering (2023) Vol.7

⁷⁵ As cited in footnote 74

⁷⁶ As cited in footnote 74

⁷⁷ Wu, H., et al., '<u>Constructed wetlands for pollution control</u>' *Nature reviews Earth and Environment* (2023) Vol. 4, p.218-234

⁷⁸ As cited in footnote 77

⁷⁹ Natural Resources Wales, <u>The wonder of wetlands: Nature's helping hand in reducing pollution</u>, (2 February 2023), Accessed: 5 June 2024

Constructed wetlands are a complex and diverse web of interactions resulting in the removal of polluting nutrients⁸⁰. A key characteristic of wetlands is the relationship between plants, microbes and substrates⁸¹. When runoff enters wetlands, excess nutrients are absorbed by the soils, plants and microbes⁸². Microbes are often key players in these interactions converting nitrogen into inorganic and bioavailable forms of nitrogen which can be readily absorbed by plants⁸³. There are many different types of constructed wetlands, however the most effective at reducing nutrient flow-through is a hybrid-constructed wetland which is a combination of vertical flow wetlands and horizontal flow wetlands⁸⁴. The difference between these wetland designs is the direction of water travel through the wetland⁸⁵. Hybrid-constructed wetland removal efficiencies have been recorded to be around 72% for ammonia, 63% total nitrogen and 72% total phosphorous⁸⁶. A study compared constructed wetlands to other wastewater treatments and found that constructed wetlands tend to have low maintenance costs, can adapt to differences in water flow and provide ecosystem benefits⁸⁷.

In summary, constructed wetlands provide an approach to reducing nutrient pollution entering water bodies⁸⁸. As a contributing factor in algal blooms, a reduction in nutrient pollution is likely to lead to a long-term reduction in the prevalence of algal blooms⁸⁹. Constructed wetlands are effective at reducing

89 As cited in footnote 8

⁸⁰ Arden, S. & Ma, M. '<u>Constructed Wetlands for Greywater Recycle and Reuse: A Review</u>' Science of the Total environment (2020) Vol. 630, p.587-99

⁸¹ As cited in footnote 79

⁸² Takai, K., '<u>The Nitrogen Cycle: A Large, Fast, and Mystifying Cycle</u>' *Microbes and Environments* (2019) Vol. 34, p.223-225

⁸³ <u>As cited in footnote 82</u>

⁸⁴ Davis, L., et al., <u>A Handbook of Constructed Wetlands</u>, (1995)

⁸⁵ Parde, D. et al., '<u>A review of constructed wetland on type, treatment and technology of wastewater</u>' *Environmental Technology & Innovation* (2021) Vol. 21

⁸⁶ As cited in footnote 77

⁸⁷ As cited in footnote 85

⁸⁸ As cited in footnote 79

nutrient pollution from runoff. However, they require designated land with low disturbance⁹⁰.

2.4 Aeration

Still or stagnant water, warm temperatures, and high sunlight are favourable conditions for algal bloom formation. Aeration is a technique which may be able to combat these factors⁹¹. Aeration is the process of adding air into a water body usually via an aeration device⁹².

There are several ways that aeration can prevent the formation of algal blooms and mitigate the negative consequences. Aeration can discourage algal bloom formation through surface agitation⁹³. Algal blooms are more common in water with low movement, such as stagnant water so increased surface water agitation reduces the frequency of bloom formation⁹⁴. This also increases circulation in the water body similar to artificial mixing methods⁹⁵ (section 2.5). Additionally, aeration helps regulate gases in the water by adding oxygen, which can prevent the death of fish and plants during an algal bloom⁹⁶.

Aeration aids in balancing nutrients and gases in the water and initiates water movement increasing the mixing of water layers and destratification⁹⁷. These can contribute to reduced formation of algal blooms over time and also minimise the effect of algal blooms on the ecosystems when they occur. However, scientific journal articles on aeration are limited in number and focus primarily on the artificial mixing characteristic of aeration⁹⁸.

98 As cited in footnote 27

⁹⁰ As cited in footnote 84

⁹¹ Kasco Marine, *How Aeration Improves Algae Issues*, (10 February 2016), Accessed: 5 June 2024

⁹² As cited in footnote 91

⁹³ As cited in footnote 91

⁹⁴ As cited in footnote 91

⁹⁵ NEIWPCC, <u>Harmful Algal Bloom control Methods Synopses</u> (2015)

⁹⁶ As cited in footnote 91

⁹⁷ Destratification is the disruption of stratified waters (see section 1.2.6)

2.5 Artificial mixing

Artificial mixing has been used to prevent algal bloom growth for many years. It aims to reduce algal blooms by disrupting thermal stratification and creating physical conditions which deter algal growth⁹⁹. Artificial mixing works by counteracting the natural buoyancy of cyanobacteria which is caused by gas vesicles¹⁰⁰ and other buoyancy mechanisms¹⁰¹.

Artificial mixing alters the structure of a lake, resulting in changes in the biomass and composition of phytoplankton¹⁰². This process involves imposing strong mixing which traps cyanobacteria in turbulent flow¹⁰³. The mixing must be deep enough to restrict sunlight reaching the cyanobacteria, thereby limiting their growth¹⁰⁴. Deep mixing in lakes also reduces the overall water temperature further disrupting optimal conditions for cyanobacterial growth¹⁰⁵. This effect is reduced in shallower lakes and highly buoyant taxa, like cyanobacteria, require a depth of at least 15 metres for effective artificial mixing¹⁰⁶. Research indicates that reducing the cyanobacterial buoyancy can allow other algae, such as diatoms, to compete more effectively for nutrients¹⁰⁷. Interestingly, this can cause a shift in the composition of phytoplankton from a higher proportion of cyanobacteria to green algae and diatoms¹⁰⁸.

Artificial mixing reduces stratification, bringing the average temperature of the water lower¹⁰⁹. However, despite an overall decrease in temperature, there is

⁹⁹ As cited in footnote 27

¹⁰⁰ Gas vesicles are hollow structures inside a cell. They are not permanent structures and can be created for many reasons including cellular transport and buoyancy.

¹⁰¹ Walsby, A.E., 'Gas Vesicles' Microbiological Reviews (1994) Vol. 58, p.94-144

¹⁰² As cited in footnote 27

¹⁰³ As cited in footnote 27

¹⁰⁴ As cited in footnote 27

¹⁰⁵ Cooke, G.D., et al., '<u>Restoration and management of lakes and reservoirs</u>' Regulated Rivers: Research and Management (1994) Vol. 9

¹⁰⁶ As cited in footnote 27, p. 435

¹⁰⁷ As cited in footnote 27, p. 434

¹⁰⁸ As cited in footnote 27, p. 436

¹⁰⁹ As cited in footnote 27, p. 437

an increase in temperature at the deeper depths¹¹⁰. This higher temperature may result in increased mineralisation and a higher phosphorous release from the sediment¹¹¹. However, this presents a greater issue in deeper, thermally stratified water bodies¹¹². Similarly to aeration, artificial mixing increases the oxygen content of the water and can protect organisms living in the water body during an algal bloom¹¹³.

In summary, artificial mixing reduces overall water temperature, increased oxygen content and disruption to the surface waters, all of which are methods to prevent algal bloom formation and protect the fish and plants in the water body¹¹⁴. Artificial mixing programmes are generally more successful when the water body is not experiencing sufficient vertical mixing¹¹⁵. Mixing strategies are generally more limited when the amount and distribution of mixing devices do not cover the entirety of the lake and if the lake is too shallow¹¹⁶.

2.6 Removal of zebra mussels

Zebra mussels originate in the Caspian and Black Sea basins and are an invasive species in Northern Ireland¹¹⁷. Their efficient transport through water bodies has resulted in the widespread prevalence of the mussels throughout Ireland¹¹⁸. Their transport is frequently due to human activities such as shipping

¹¹⁰ <u>As cited in footnote 27</u>, p. 431

¹¹¹ As cited in footnote 27, p. 431

¹¹² <u>As cited in footnote 27</u>, p. 431

¹¹³ As cited in footnote 27, p. 431

¹¹⁴ As cited in footnote 27

¹¹⁵ As cited in footnote 27

¹¹⁶ As cited in footnote 27

¹¹⁷ Karatayev, A.Y. & Burlakova, L.E., '<u>What we know and don't know about the invasive zebra</u> (<u>Dreissena polymorpha</u>) and quagga (<u>Dreissena rostriformis bugensis</u>) mussels' Hydrobiologia (2022), p.21

¹¹⁸ McLean, S.P., et al., '<u>Establishment of the zebra mussel Dreissena polymorpha (Pallas, 1771) In</u> <u>Lough Neagh, Northern Ireland</u>', Biology and Environment: Proceedings of the Royal Irish Academy(2010) Vol. 110B, p.1

and boating. Specifically, zebra mussels often attach to the hulls of boats¹¹⁹. Zebra mussels are filter feeders, meaning they feed on phytoplankton and zooplankton, reducing their numbers in water¹²⁰. This often results in a clearing effect, the water becomes clearer and sunlight can penetrate deeper. The zebra mussel population causes substantial adverse effects including disruption of nutrient cycling which can result in negative effects for fish and plankton¹²¹.

Zebra mussels have been associated with an increased incidence of algal blooms¹²². This is because, during selective filtering, zebra mussels alter the ratios of nitrogen to phosphorous in the water¹²³. This causes rapid accumulation of cyanobacteria, specifically *Microcystis*¹²⁴. The relationship between zebra mussels, phosphorous and cyanobacteria is complex with different concentrations of phosphorous resulting in different rates of accumulation of *Microcystis*¹²⁵.

As an invasive species with a high reproductive rate, there has been interest in understanding methods to remove the mussels from water bodies globally. Methods for removal include hand-removal¹²⁶, hydro-blasting¹²⁷, oxygen

¹¹⁹ Morton, B.S., 'The anatomy of Dreissena polymorpha and the evolution and success of the heteromyarian form in the Dreissenoidea'. In: T F Nalepa and D W Schloesser (eds.) Zebra Mussels: Biology, Impacts and Control (1993), p.190

¹²⁰ Ten Winkel, E.H. & Davids, C. '<u>Food selection by Dreissena polymorpha Palla</u>' *Freshwater Biology* (1982), p.553-558

¹²¹ Maguire, C.M. & Sykes, L.M., '<u>Zebra mussel management strategy for Northern Ireland 2004-</u> <u>2010</u>', Queens University Belfast (2004), p9

¹²² Bykova, O. et al., '<u>Do zebra mussels (Dreissena polymorpha) alter lake water chemistry in a way</u> <u>that favours Microcystis growth?</u>'. Science of the Total Environment (2006) Vol. 371, p369

¹²³ As cited in footnote 122

¹²⁴ As cited in footnote 122

¹²⁵ As cited in footnote 122

¹²⁶ J Wimbush et al., 'Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY' Aquatic Conservation: Marine and Freshwater Ecosystems (2009) Vol.19, p.711

¹²⁷ Culver, C. et al., 'Quagga and zebra mussel eradication and control tactics' California Sea Grant Report No. T-076/UCCE-SD Technical Report No. 2013-1 (2013), p.10

deprivation¹²⁸, potassium chloride¹²⁹, copper-based treatments¹³⁰, pH¹³¹, biopesticides¹³², and pressure pulses¹³³ and bio-bullets¹³⁴. These treatments are most effective for new and localised infestations. Further information addressing Zebra mussel distribution, biology, removal and legislation can be found in the RalSe briefing paper: 'Zebra Mussels in Northern Ireland'.

3 Control

Due to climate change, the prevalence of algal blooms is increasing worldwide. As a result, finding ways to control algal blooms is a pressing question for communities globally. There are numerous methods for controlling algal blooms, and innovative technologies are being routinely developed. This section will discuss various prominent methods of algal bloom control, including mechanical, chemical, and biological solutions.

4 Physical control

4.1 Shading technology

Light is essential for cyanobacterial survival and encourages algal growth through photosynthesis. Therefore, methods have been proposed to reduce

¹²⁸ Wittmann, M. et al., '<u>The Control of an Invasive Bivalve, Corbicula fluminea, Using Gas</u> <u>Impermeable Benthic Barriers in a Large Natural Lake</u>', *Environmental Management* (2012) Vol. 49, p.1

¹²⁹ Fisher, S.W. et al., '<u>Molluscicidal activity of potassium to the zebra mussel</u>, <u>Dreissena polymorphia</u>: <u>toxicity and mode of action</u>', *Aquatic Toxicology* (1991) Vol. 20, p1

¹³⁰ Hammond, D. & Ferris, G., 'Low doses of EarthTec QZ ionic copper used in effort to eradicate <u>quagga mussels from an entire Pennsylvania lake</u>' (2019) *Management of Biological Invasions*, Vol.10

¹³¹ Claudi, R. et al., '<u>Impact of pH on survival and settlement of dreissenid mussels</u>' Aquatic Invasions (2012) Vol.7, p.28

¹³² ProFarm, <u>Marrone Bio – Zequanox</u>

¹³³ Schaefer, R., et al., '<u>Control of zebra mussels using sparker pressure pulses</u>'. Journal of the American Water Works Association (2010) Vol. 102, p.1

¹³⁴ Aldridge, D.C. et al., '<u>Microencapsulated BioBullets for the Control of Biofouling Zebra Mussels</u>', Environmental Science and Technology (2006) Vol. 40, p.1

algal blooms by introducing shading technology such as vegetation and enclosures¹³⁵.

Research indicates that algal growth increases with higher light intensity and warmer surface temperatures¹³⁶. Shading technology can reduce light intensity and surface water temperature, therefore preventing rapid algal growth¹³⁷. Where algal growth is restricted in shaded areas, there tends to be higher nutrient levels because algae are not absorbing the nutrients at the same rate¹³⁸.

Shading methods can be combined with other techniques, such as riparian buffers, to decrease algal blooms¹³⁹. Riparian shading involves using woody vegetation in the areas between water bodies and potential sources of nutrient pollution, like farmland, wastewater treatment facilities, and urban areas¹⁴⁰. However, shading technology is often limited by size or location¹⁴¹. While riparian shading effectively reduces algal blooms on the edges of water bodies, other more portable shading technologies can be used in open areas of the water bodies¹⁴².

4.2 Barley straw

Barley straw controls algal blooms via multiple mechanisms and has primarily been applied to lakes and ponds for algal management¹⁴³. It has been suggested that barley straw releases phenolic compounds which can reduce

¹⁴² As cited in footnote 135

¹³⁵ Cao, C., et al., '<u>Eutrophication and algal blooms in channel type reservoirs: A novel enclosure</u> <u>experiment by changing light intensity</u>' *Journal of Environmental Sciences* (2011) Vol. 23, p.1660-1670

¹³⁶ As cited in footnote 8

¹³⁷ As cited in footnote 135

¹³⁸ As cited in footnote 135

¹³⁹ Burrell, T., '<u>Riparian shading mitigates stream eutrophication in agricultural catchments</u>' *Freshwater Science* (2014) Vol. 33, p.73-84

¹⁴⁰ As cited in footnote 139

¹⁴¹ As cited in footnote 139

¹⁴³ Anderson, D.M. et al., '<u>Harmful Algal Blooms (HABs) and desalination: a guide to impacts,</u> <u>monitoring and management</u>' (2017), p.209

the growth of some algae (dinoflagellates)¹⁴⁴, however, barley straw also releases hydrogen peroxide as it decomposes¹⁴⁵. Hydrogen peroxide is a wellestablished compound used to control algal growth including cyanobacteria (see section 5)¹⁴⁶. Mechanical shearing can increase the speed of decomposition, but this method is most effective in closed systems such as lakes¹⁴⁷.

4.3 Air flotation

Dispersed air flotation is a popular method in wastewater treatment to separate solid particles from liquid suspension¹⁴⁸. It has been explored as an effective method to recover algae from water bodies, primarily for use as biofuels¹⁴⁹.

Flotation methods are well-established in algae recovery¹⁵⁰. Bloom-infested water enters a chamber and compressed air is injected¹⁵¹. The air bubbles float through the mixture to the surface attaching to the algal cells on the way up and pulling them to the surface¹⁵². The algae are then removed from the top via a skimming device¹⁵³.

Air flotation is an energy-intensive process and often requires the construction of a processing unit near the water body¹⁵⁴. Studies show that air flotation is a

¹⁵⁴ As cited in footnote 148

¹⁴⁴ Terlizzi, D. E. et al., '<u>Inhibition of dinoflagellate growth by extracts of barley straw (Hordeum vulgare)</u>'. *Journal of Applied Phycology* (2002) Vol. 14, p.275–280.

¹⁴⁵ Iredale, R. S., et al., '<u>A series of experiments aimed at clarifying the mode of action of barley straw</u> in cyanobacterial growth control'. Water Research (2012) Vol. 46, p.6095–6103

¹⁴⁶ As cited in footnote 145

¹⁴⁷ As cited in footnote 143

¹⁴⁸ Wastewater Digest, <u>What is dissolved air flotation (DAF)?</u>, (24 April 2024), Accessed: 26 June 2024

¹⁴⁹ Alhattab, M. and Brooks, M.S., 'Dispersed air flotation and foam fractionation for the recovery of microalgae in the production of biodiesel' Speration Scienc and Technology (2017) Vol.52, p.2002-2016

¹⁵⁰ As cited in footnote 149

¹⁵¹ Uduman, N., et al., '<u>Dewatering of microalgal cultures: a major bottleneck to algae-based fuels</u>.' Journal of Renewable and Sustainable Energy (2010) Vol.2

¹⁵² As cited in footnote 151

¹⁵³ As cited in footnote 148

rapid and highly effective method of separating algal cells and water¹⁵⁵. In some circumstances, air flotation has been paired with foam fractionation, a method to collect the algae from the surface of the water¹⁵⁶. This includes adding foaming particles to the compressed air that causes the algal cells to be trapped in foam for removal¹⁵⁷. Most of the research regarding air flotation methods has been conducted with industry in mind, either algal removal in wastewater treatment or in algal recovery for energy¹⁵⁸.

4.4 Clay flocculation

Clay flocculation to control algal blooms has been used worldwide in marine and freshwater environments. Clay is a common flocculent used, however researchers are exploring using modified clay for flocculation. This clay has additional components for more effective destruction of algal blooms¹⁵⁹.

Flocculation is the process of a flocculent, such as clay, and water being sprayed over the algal bloom surface¹⁶⁰. The flocculent solution kills the algal cells by causing them to aggregate and sink¹⁶¹. Clay flocculation has been used on 'fairly large-scale' algal blooms with an '80-95% removal efficiency of biomass from the surface waters'¹⁶². In Western Australia, a clay flocculent has been modified to bind to phosphorous¹⁶³. As a result phosphorous in the water sinks alongside the algal cells to the lake bed¹⁶⁴. This technique has the potential to destroy the algal bloom and also introduce phosphorous limitation.

¹⁵⁵ Edzwald, J.K. 'Dissolved air flotation and me' Water Research (2010) Vol. 44, p.2077–2106.

 ¹⁵⁶ Burghoff, B., '<u>Foam fractionation applications</u>' *Journal of Biotechnology* (2012) Vol. 161, p.126–137
¹⁵⁷ As cited in footnote 156

¹⁵⁸ Wang, L.K., et al., *<u>Flotation Technology</u>* (2010)

¹⁵⁹ National Centers for Coastal Ocean Science, <u>Clay Treatments to Control Red Tide Unlikely to</u> <u>Harm Blue Crabs</u>, (8 January 2024), Accessed: 4 June 2024

¹⁶⁰ As cited in footnote 159

¹⁶¹ Sengco, M. & Anderson, D.M. '<u>Controlling harmful algal blooms through clay flocculation</u>' *Journal of Eukaryotic Microbiology* (2004) Vol. 52, p.169-72

¹⁶² As cited in footnote 161

¹⁶³ <u>Modified clay helping reduce algal blooms by binding to phosphorus which causes phenomenon</u>, ABC News, 15 February 2024, Accessed: 4 June 2024

¹⁶⁴ As cited in footnote 163

A possible negative consequence of clay flocculation is increased ammonium regeneration. Ammonium is a nitrogen-based compound and can promote algal growth¹⁶⁵.

Research is ongoing regarding the best flocculants. 'Ball' clay has proved successful at removing marine algal blooms¹⁶⁶. Poly-aluminium chloride-clay has also proved successful at water treatment plants¹⁶⁷. Other successful flocculants such as chitosan and clay slurry¹⁶⁸.

The impact of clay flocculants on the environment varies greatly. An increase in sinking particles causes environmental changes to the lake bed, a habitat for molluscs and crustaceans¹⁶⁹. Clams and blue crabs in Florida¹⁷⁰ and the Gulf of Mexico¹⁷¹ are not significantly impacted by the application of clay flocculants according to research. However, at specific concentrations when dissolved in acetic acid, chitosan flocculant has been shown to cause increased mortality in rainbow trout¹⁷². In 2003, researchers showed that yellow loess (a yellow silt) caused 'significant negative impact' on filer-feeding invertebrates¹⁷³.

4.5 Other nanotechnologies

¹⁶⁵ Paerl, H.W., et al., <u>'Controlling harmful cyanobacterial blooms in a world experiencing</u> <u>anthropogenic and climatic-induced change</u>' *Science of the Total Environment* (2011) Vol. 409, p.1739-45

¹⁶⁶ As cited in footnote 143, p.210

¹⁶⁷ As cited in footnote 143, p.210

¹⁶⁸ As cited in footnote 143, p.210

¹⁶⁹ Seo, K., et al., '<u>Effect of yellow clay on respiration and phytoplankton uptake of bivalves</u>' Fisheries Science (2008) Vol.74, 120-127

¹⁷⁰ As cited in footnote 159

¹⁷¹ Archambault, M., et al., '<u>Effects of suspended and sedimented clays on juvenile hard clams,</u> <u>Mercenaria mercenaria, within the context of harmful algal bloom mitigation</u>' *Marine Biology* (2004) Vol. 144, p.553-565

¹⁷² Bullock, G., et al., '<u>Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss</u>)' Aquaculture (2000) Vol.185, p.273-280

¹⁷³ Shumway, S., et al., '<u>Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates</u>' *Aquaculture Research* (2003) Vol.34, p.1391-1402

Nanotechnology is a rapidly developing field in algal bloom management including photocatalysis, flocculation, oxidation and adsorption¹⁷⁴. Nanotechnology refers to molecules and technologies sized between 1 and 100 nanometres¹⁷⁵. In section 4.4 (above), a nanotechnology, modified clay flocculation, is considered. In this section, other nanotechnologies are considered as algal bloom management options.

Photocatalysis has been proposed as a method to control algal blooms using titanium dioxide (TiO₂) semiconductor electrodes¹⁷⁶. Under light, these electrodes undergo a chemical change which means they can react with other compounds to form radicals¹⁷⁷ and reactive oxygen species¹⁷⁸ which cause algal death¹⁷⁹.

Adsorption is another promising nanotechnology method which could be used to control nutrient levels in water bodies, specifically phosphorous¹⁸⁰. Adsorption is the phenomenon of gas or liquid particles binding to the surface layer of a solid. Nanomaterials are often good adsorbents due to their large surface area per unit mass¹⁸¹. Nanoadsorbents possessing phosphorus binding sites may be used to remove phosphorous from water with zinc oxide (ZnO) of particular interest¹⁸².

¹⁷⁴ Song, J., et al., '<u>Nanoparticles, an Emerging Control Method for Harmful Algal Blooms: Current</u> <u>Technologies, Challenges, and Perspectives</u>' *Nanomaterials* (2023) Vol.13

¹⁷⁵ Malik, S., et al., 'Nanotechnology: A Revolution in Modern Industry' Molecules (2023) Vol. 28

¹⁷⁶ Kim, S. & Lee, D., '<u>Preparation of TiO2-coated hollow glass beads and their application to the</u> <u>control of algal growth in eutrophic water</u>' *Microchemical Journal* (2005) Vol. 80, p.227-232

¹⁷⁷ Radicals are atoms, compounds or molecules with at least one unpaired electron on the outermost shell of an atom (also known as a valence electron).

¹⁷⁸ Reactive oxygen species are highly reactive chemicals containing at least one oxygen atom and at least one unpaired electron.

¹⁷⁹ Wang, X. et al., '<u>A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis</u> <u>aeruginosa under visible light irradiation</u>' Separation and Purification Technology (2019) Vol. 222, p.99-108

¹⁸⁰ As cited in footnote 174

¹⁸¹ Vunain, E. et al., '<u>Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the</u> <u>removal of heavy metal ions: A review</u>' *International Journal of Biological Macromolecules* (2016) Vol. 86, p. 570-586

¹⁸² Li, X. et al., '<u>Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms</u>' *Science of the Total Environment* (2020)

According to a recent literature review, nanoparticles are a promising technology for algal bloom management with molecules such as TiO₂ and ZnO exhibiting anti-algae properties¹⁸³. Existing nanotechnologies often have a high algicidal rate which is usually within the first 24 hours¹⁸⁴. Nanotechnology also presents options for nutrient removal from water bodies through adsorption. However, further research is needed to ascertain the specific toxicity and ecosystem impacts of using these technologies in the natural environment¹⁸⁵.

4.6 Filtration

Filtration is a well-established wastewater treatment strategy popular worldwide¹⁸⁶. There are two main methods of filtration: sand filtration and membrane filtration¹⁸⁷. Sand filtration is a simple and inexpensive method of removing algal cells from water. Pressure is used to pull water through different coarseness of sand until the algal cells are trapped within the sand (slow sand filtration)¹⁸⁸. The sand from the filtration units can be used to fertilize soil once the lifespan of the filters is complete¹⁸⁹. Another filtration method is membrane filtration, which involves a selective permeation membrane that filters water based on a pressure or concentration difference, trapping the microalgae in the membrane¹⁹⁰.

Sand filtration systems offer a simplistic design and construction¹⁹¹. However, membrane filtration systems can deal with greater amounts of algal cells¹⁹².

¹⁹² As cited in footnote 187

¹⁸³ As cited in footnote 174

¹⁸⁴ As cited in footnote 174

¹⁸⁵ As cited in footnote 174

¹⁸⁶ Esen, I.I., et al., '<u>Algae removal by sand filtration and reuse of filter material</u>' Waste Management (1991) Vol. 11, p.59-65

¹⁸⁷ Zeng, G., et al., '<u>Comparison of the Advantages and Disadvantages of Algae Removal Technology</u> <u>and Its Development Status</u>' Water (2023) Vol.15

¹⁸⁸ As cited in footnote 186

¹⁸⁹ As cited in footnote 186

¹⁹⁰ As cited in footnote 187

¹⁹¹ As cited in footnote 186

'Fouling' is a consequence of both filtration methods and is the process of algal cells and other suspended matter caking over the membrane or clogging the sand¹⁹³. This increases resistance in filtration and loss of permeability, requiring the membrane or sand to be replaced¹⁹⁴. Filtration methods can be static or mobile with researchers designing a floating filtration technique using geotextile filters to combat algal blooms in shallow lakes¹⁹⁵.

4.7 Ultrasonication

Cyanobacteria are photosynthetic and require light to generate energy. Therefore cyanobacteria remain buoyant and float in the surface waters. Ultrasonic waves can affect buoyancy regulation. This prevents algae from gaining significant buoyancy and therefore not gaining enough sunlight to bloom¹⁹⁶.

Ultrasound disrupts the growth of algae via the generation of cavitation bubbles¹⁹⁷. These bubbles burst causing localised regions of extreme temperature (up to 5000 °C)¹⁹⁸. The extreme temperature results in a disruption in the buoyancy of cyanobacteria causing them to sink¹⁹⁹. Cyanobacterial sensitivity to ultrasound radiation varies between species²⁰⁰. Cyanobacteria with greater surface area are more susceptible to ultrasound treatment²⁰¹. The

¹⁹³ As cited in footnote 186

¹⁹⁴ As cited in footnote 186

¹⁹⁵ Phys.org, <u>Researchers fight shallow lake algae blooms with floating filtration technique</u>, (18 April 2023), Accessed: 25 June 2024

¹⁹⁶ Park, J., et al., '<u>Recent advances in ultrasonic treatment: Challenges nd field applications for</u> <u>controlling harmful algal blooms (HABs)</u>' *Ultrasonics Sonochemistry* (2017) Vol. 38, p.326-334

¹⁹⁷ Suslick, K., 'Sonochemistry' Science (1990)

¹⁹⁸ As cited in footnote 197

¹⁹⁹ As cited in footnote 196

²⁰⁰ Purcell, D., et al., '<u>The influence of ultrasound frequency and power, on the algal species</u> <u>Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp.</u>' *Environmental technology* (2013) p.2477-2490

²⁰¹ As cited in footnote 200

impact of ultrasound on ecosystems is not fully understood. However, some studies indicate no increase in fish mortality or behaviour change²⁰².

Ultrasound radiation is a compact and simple-to-use method to control algal blooms²⁰³. Whether ultrasound can be used on large scales is not fully understood²⁰⁴. Changes in factors like rainfall, light intensity, temp, and water can make the technology less reliable²⁰⁵.

4.8 Ultraviolet (UV)

Ultraviolet (UV) irradiation has been used in disinfection for over 100 years and is a well-established method to stop microbial propagation²⁰⁶. Recently UV-C, a type of UV irradiation, is being explored as a method to control algal blooms²⁰⁷. High UV irradiation kills cyanobacteria through the inhibition of photosynthesis²⁰⁸.

The infrastructure required for UV-C radiation treatment is minimal with simple equipment²⁰⁹. This equipment can be attached to mobile devices to expand the application to larger water bodies²¹⁰. Compared to other algal bloom management options, UV-C is chemical-free which means there is a lower risk of disinfection by-products which could cause adverse effects on the ecosystem²¹¹. Previous studies have mostly been laboratory-based using the

²⁰² Griessler Bulc, T., et al., <u>'The efficiency of a closed-loop chemical-free water treatment system for cyprinid fish farms</u>' *Ecological Engineering* (2011) Vol.34, p.873-882

²⁰³ As cited in footnote 196

²⁰⁴ As cited in footnote 196

²⁰⁵ As cited in footnote 196

²⁰⁶ Downing, A.M.W. and Blunt, T.P., <u>'III. Researches on the effect of light upon bacteria and other</u> <u>organisms</u>' *Proceedings of the Royal Society of London* (1878) Vol.26, p.488–500.

²⁰⁷Li, S. et al., '<u>UV-C irradiation for harmful algal blooms control: A literature review on effectiveness,</u> <u>mechanisms, influencing factors and facilities</u>' *Science of the Total Environment* (2020) Vol. 723, p.137986

²⁰⁸ As cited in footnote 207

²⁰⁹ As cited in footnote 207

²¹⁰ As cited in footnote 207

²¹¹ As cited in footnote 207

cyanobacteria *Microcystis aeruginosa*, therefore 'larger field tests' and 'deeper research on [the] mechanisms' causing algal death as a result of UV irradiation²¹².

5 Chemical control

Chemical control methods involve the removal of algal blooms by the addition of chemicals to the water body. Historically popular chemical control methods include hydrogen peroxide and copper sulphate. It is important to note that the chemical control options included in this research paper may not be suitable or authorised for use in Northern Ireland and approval may be required for use.

5.1 Hydrogen peroxide

Hydrogen peroxide is well-established as an agent for destroying bacterial cultures in laboratory settings²¹³.

Hydrogen peroxide is a compound with strong oxidising capabilities, making it an effective disinfectant²¹⁴. In 2020, the efficacy of hydrogen peroxide as an agent to clear algal blooms was assessed in four diverse lakes in the USA²¹⁵. Within this study, the effect of the agent on target cyanobacteria and non-target microorganisms was addressed. Hydrogen peroxide was administered at four micrograms per litre of water reducing cyanobacterial levels from 85% of the total phytoplankton community to 29%²¹⁶. Other algae were not negatively impacted by hydrogen peroxide and increased their proportion of the phytoplankton community²¹⁷. In pond trials, fish and prawns were not affected

²¹² As cited in footnote 207

²¹³ Drabkova, M. et al., '<u>Combined exposure to hydrogen peroxide and light-slecetive effects on</u> <u>cyanobacteria, green algae and diatoms</u>' *Environmental Science and Technology* (2006) Vol. 41, p.309-314

²¹⁴ As cited in footnote 213

²¹⁵ Lusty, M.W. and Gobler, C.J., '<u>The Efficacy of Hydrogen Peroxide in Mitigating Cyanobacterial</u> <u>Blooms and Altering Microbial Communities across Four Lakes in NY, USA</u>' *Toxins* (2020) Vol.12, p.428

²¹⁶ As cited in footnote 215

²¹⁷ As cited in footnote 215

by adding hydrogen peroxide to the water²¹⁸. Overall, 'larger scale and whole ecosystem experiments' are required to fully understand the impact of hydrogen peroxide on bloom mitigation in the natural environment²¹⁹.

5.2 Copper sulfate

Copper sulfate was a commonly used chemical control method in the twentieth century and is an effective method for removing algal blooms from water bodies²²⁰. Copper sulfate inhibits nitrogen fixation²²¹. Nitrogen fixation is the process of converting atmospheric nitrogen to usable nitrogen in the cell. The inhibition of this process limits nitrogen availability in the cell resulting in reduced cyanobacterial growth²²². Copper sulfate is routinely added to water supplies alongside chloride ions to reduce microalgal populations²²³. However, despite its efficiency at controlling cyanobacterial populations, the usefulness of copper sulfate in the natural environment is limited²²⁴. This is because copper sulfate is non-specific and has been shown to cause damage to marine animals and plants²²⁵.

5.3 Peracetic acid

Peracetic acid, also known as peroxyacetic acid or PAA is a widespread antimicrobial agent and disinfectant²²⁶. Peracetic acid is an oxidiser and can be

 ²¹⁸ Ng, P.H. et al., '<u>Hydrogen peroxide as a mitigation against *Microcystis* sp. Bloom</u>' Aquaculture (2023) Vol.577

²¹⁹ As cited in footnote 215, p.428

²²⁰ McKnight, D.M, et al., '<u>CuSO4 treatment of nuisance algal blooms in drinking water reservoirs</u>' *Environmental Management* (1983) Vol. 7, p.311-320

²²¹ Elder, J.F. and Horne, A.J., '<u>Copper cycles and CuSO4 algicidal capacity in two California</u> <u>lakes</u>' *Environmental Management* (1978) Vol. 2, p.17–30.

²²² Sarma, R. & Prakash, P., <u>'Chapter 14 - Physiological aspects of cyanobacterial nitrogen fixation</u> and its applications in modern sciences' in Advances in Cyanobacterial Biology (2020), p.205-217

²²³ Zamyadi, A., et al., '<u>Toxic cyanobacterial breakthrough and accumulation in a drinking water plant:</u> <u>a monitoring and treatment challenge</u>' *Water Research* (2012) Vol. 4, p. 1511-1523

²²⁴ As cited in footnote 143, p.211

²²⁵ As cited in footnote 143, p.211

²²⁶ United States Department of Agriculture Food Safety and Inspection Service (USDA FSIS), <u>Health</u> <u>Hazard Information Sheet Peroxyacetic Acid (PAA),</u> (n.d)

derived from hydrogen peroxide, acetic acid and sulfuric acid²²⁷. A field evaluation of seven algicidal products includes peracetic-acid based products (Peraclean and VigorOx SP-15)²²⁸. These products were shown to significantly reduce cyanobacterial communities with minimal impact on other algae²²⁹. The study noted the cost of peracetic-acid based products was 'moderate to high' compared to the other chemical control methods evaluated²³⁰.

5.4 Simazine

Simazine is a very effective herbicide with previous widespread usage²³¹. A study found simazine among the most effective chemical control methods²³². Simazine is a non-specific herbicide that inhibits photosynthetic pathways and restricts the growth of algae, plants and other photosynthetic organisms²³³. The non-specificity of herbicidal action means non-target organisms are also impacted²³⁴. In 2004, most European Union member states banned simazine use as an herbicide²³⁵. The ECHA categorises simazine as 'very toxic for aquatic life' and 'very toxic to aquatic life with long lasting effects'²³⁶. Recently calls for action have been introduced in the USA to limit the use of simazine and

²²⁹ As cited in footnote 228

²²⁷ United States Department of Agriculture Agricultural Marketing Service (USDA AMS), <u>Peracetic Acid</u>, (2000)

²²⁸ Buley, R.P. et al., 'Field evaluation of seven products to control cyanobacterial blooms in aquaculture' Environmental Science and Pollution Research (2021) Vol. 28, p.29971–29983

²³⁰ As cited in footnote 228

²³¹ Breckenridge, C.B., et al., '<u>PBPK-Based Probabilistic Risk Assessment for Total Chlorotriazines in</u> <u>Drinking Water</u>.' *Toxicological Sciences* (2016) Vol. 150, p.269-282

²³² Anantapantula, S. & Wilson, A., '<u>Most treatments to control freshwater algal blooms are not</u> <u>effective: Meta-analysis of field experiments</u>' *Water Research* (2023) Vol. 243. P.120342

²³³ Qian, H., et al., 'PGR5 and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem-interfering herbicides' Journal of Agricultural Food Chemistry (2014) Vol.62

 ²³⁴ Department, Government of Western Australia Department of Agriculture and Food, <u>Toxic algal</u> <u>blooms</u>, 14 April 2020, Accessed: 25 June 2024

²³⁵ 2004/247/EC: Commission Decision of 10 March 2004 concerning the non-inclusion of simazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance

²³⁶ European Chemicals Agency, Simazine Substance Infocard, (n.d.), Accessed: 25 June 2024

similar herbicides²³⁷. This context may make it non-viable for use in Northern Ireland.

6 Biological control

Biological control methods involve the removal of algal blooms through the introduction of biological organisms. This section includes biological control methods, including algicidal bacteria, algicidal viruses (cyanophage), and grazers.

6.1 Algicidal bacteria

Bacterial interactions are extensive complex and diverse encompassing mutually beneficial symbiotic relationships to parasitic interactions. Algicidal bacteria refer to bacteria involved in antagonistic interactions with algae²³⁸. Algicidal action can occur via many modes including both indirect and direct action²³⁹. Notable algicidal bacteria includes *Streptomyces globisporus*²⁴⁰,

The bacterial species *S. globisporus* is antagonistic towards the harmful algal bloom-forming cyanobacteria *Microcystis aeruginosa*²⁴¹. Its mechanism of action is through a direct attack, where long filamentous 'arms' of *S. globisporus* wrap around the cyanobacteria²⁴². This direct cell-to-cell attack is specific to *M. aeruginosa* and *S. globisporus* does not seem to have 'major impacts' on other green algae²⁴³.

243 As cited in footnote 240

²³⁷ United States Environmental Protection Agency, <u>EPA Releases Final Biological Evaluations for</u> <u>Glyphosate, Atrazine, and Simazine</u>, (12 November 2021), Accessed: 25 June 2024

²³⁸ Coyne, K. et al., '<u>Algicidal Bacteria: A review of Current Knowledge and Applications to Control Harmful algal Blooms</u>' *Frontiers in Microbiology* (2022) Vol. 13, p.11

²³⁹ As cited in footnote 238

²⁴⁰ Zeng, Y. et al., '<u>A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact</u>' Science of the Total Environment (2021) Vol. 769, p.144489

²⁴¹ As cited in footnote 240

²⁴² As cited in footnote 240

Previous research has indicated that algicidal bacteria are an effective method to manage algal growth²⁴⁴. Previously, most studies assessing the impact of algicidal bacteria have been conducted in laboratory settings in a one-on-one with one species of algicidal bacteria and one species of cyanobacteria²⁴⁵. Other limitations noted in a review of algicidal bacteria include laboratory culture experiments including higher cell densities than are likely to exist in nature²⁴⁶. A review in 2022, considered the 'convincing evidence' for control of algal bloom in nature by algicidal bacteria to increase the amount of 'naturally occurring algicidal bacteria during the late stages of blooms'²⁴⁷. The effectiveness and environmental impact of adding algicidal bacteria into the natural environment are not fully understood²⁴⁸.

6.2 Cyanophage

The natural environment consists of a delicate balance of diverse organisms including bacteria and viruses²⁴⁹. Bacteriophage are viruses that infect bacteria and have recently gained prominence due to their potential to treat diseases through phage therapy²⁵⁰. Cyanophage are viruses infecting cyanobacteria. The potential for cyanophage to be used to manage algal blooms is being explored.

Cyanophage technologies work by enhancing the natural cycle of viral-bacterial interactions²⁵¹. These cyanophage-cyanobacteria interactions can occur via the lytic cycle²⁵². The lytic cycle is initiated when a virus infects the bacteria²⁵³. The

²⁵² As cited in footnote 251

²⁴⁴ As cited in footnote 238

²⁴⁵ <u>As cited in footnote 238</u>

²⁴⁶ <u>As cited in footnote 238</u>

²⁴⁷ As cited in footnote 238

²⁴⁸ As cited in footnote 238

²⁴⁹ Bhatt, P. et al., '<u>Cyanophage technology in removal of cyanobacteria mediated harmful algal</u> <u>blooms: A novel and eco-friendly method</u>' *Chemosphere* Vol. 315, p.1

²⁵⁰ American Society for Microbiology, <u>Phage Therapy: Past, Present and Future</u>, (31 August 2022), Accessed: 24 June 2024

²⁵¹ Grasso, C.R. et al., '<u>A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a</u> <u>Potential Cyanobacteria Control Strategy</u>' *Toxins* (2022) Vol. 14., p.2

²⁵³ Weinbaur, M.G., 'Ecology of prokaryotic viruses' FEMS Microbiology Reviews (2006) Vol.28

virus then uses the host's DNA replication machinery to replicate their DNA and once many new viruses have formed, they burst out of the cell²⁵⁴. Bursting out of the cell breaks the cell wall and results in cell death²⁵⁵.

A 2022 review of cyanophage-host relationships reported that cyanophage are specific to their cyanobacterial hosts and the addition of the viruses may not impact other microorganisms in the water body²⁵⁶. Other research has indicated that viruses have limited stability outside of the host and are susceptible to death by UV irradiation²⁵⁷. Therefore, the abundance of uninfected cyanophage in the water body is likely to be low when there is low cyanobacterial abundance²⁵⁸. So far, researchers have isolated cyanophage infecting a variety of cyanobacterial hosts from the natural environment and the mechanisms of action are being researched²⁵⁹. The 2022 review indicated that more research regarding cyanophage-cyanobacterial interactions and algal blooms in the natural environment is required²⁶⁰.

6.3 Grazers

Grazers are biological organisms that feed on phytoplankton, for example, zooplankton or protozoa²⁶¹. Most grazers have feeding preferences therefore

²⁵⁴ As cited in footnote 253

²⁵⁵ As cited in footnote 253

²⁵⁶ As cited in footnote 251

²⁵⁷ Cheng, K. et al., 'Solar radiation-driven decay of cyanophage infectivity, and photoreactivation of the cyanophage by host cyanobacteria' Aquatic Microbial Ecology (2007) Vol. 48, p. 13-18

²⁵⁸ As cited in footnote 257

²⁵⁹ As cited in footnote 249, p.1

²⁶⁰ As cited in footnote 249, p.9

²⁶¹ Protozoa are single-celled eukaryotic organisms some of whom can consume cyanobacteria.

their consumption is specific²⁶². Interestingly, research in the 1990s²⁶³ indicated the 'fate of most phytoplankton in the sea is to be consumed by grazers'²⁶⁴.

Important considerations of this method reported in a 2008 review include that the grazer must be well-understood and chosen based on the cyanobacteria causing the algal bloom²⁶⁵. This is critical since many grazers are specific and if multiple cyanobacteria are causing the bloom, the grazer may not consume all species²⁶⁶. Grazers have been recorded to consume non-toxic species which result in the proliferation of a separate toxic species due to lack of competition²⁶⁷. Another consideration is that microalgae may have defence strategies against grazers which could limit their efficacy²⁶⁸. Furthermore, it has been suggested that eutrophic conditions increase the production of grazing deterrents resulting in increased phytoplankton populations²⁶⁹. Whilst grazers are considered to have a significant impact on algal populations, these interactions for the ecosystem²⁷⁰. The 2008 review suggests more research is required to understand the mechanisms at play and this control method would benefit from combination with a reduction in nutrient levels in the water body²⁷¹.

²⁷⁰ As cited in footnote 143

²⁶² Buskey, E., '<u>How does eutrophication affect the role of grazers in harmful algal bloom dynamics</u>?' *Harmful Algae* (2008) Vol. 8, p. 152-157

²⁶³ Banse, K., 1992. <u>Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea</u>. In: Falkowski, P.G., Woodhead, A.D. (Eds.), Primary Production and Biogeochemical Cycles in the Sea. Plenum, New York, pp. 409–440.

²⁶⁴ As cited in footnote 262

²⁶⁵ As cited in footnote 262

²⁶⁶ As cited in footnote 262

²⁶⁷ Tillman, U., '<u>Interactions between Planktonic Microalgae and Protozoan Grazers</u>' Journal of Eukaryotic Microbiology (2005) Vol. 51, p. 156-168

²⁶⁸ As cited in footnote 262

²⁶⁹ Kemp, W. M., et al., '<u>Nutrient enrichment, habitat variability and trophic transfer efficiency in simple</u> <u>models of pelagic ecosystems</u>' *Marine Ecology Progress Series* 223 (2001), p.73–87.

²⁷¹ As cited in footnote 143

7 Considerations

This is research paper considers research associated with the management of algal blooms and prompts potential considerations including:

- Lough Neagh is the largest lake in the UK. Is one algal bloom management approach adequate, or will a multifaceted strategy be necessary?
- Given the poor ecological status of Northern Ireland lakes, incidences of algal blooms are likely to occur in the immediate future despite prevention measures. Is there a need for a management strategy encompassing both prevention and control? If so, what management technologies are complementary?
- What are the long-term implications of persistent algal blooms in Northern Ireland lakes? And how can management strategies be coordinated for long-term management in Northern Ireland?
- Many algal bloom management strategies are in their infancy/require additional development to be appropriate for Northern Ireland lakes, how can this be achieved? What role will the public sector take in this process?